Larry D. Bratton*, Paul C. Unangst, J. Ronald Rubin, and Bharat K. Trivedi
Department of Chemistry, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105 Received November 14, 2000

Abstract

The preparation of a variety of derivatives of 2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren-9-one $\mathbf{1}$ is described. A series of substituted indan-1-ones were prepared and oxidized with N-bromosuccinimide and dimethyl sulfoxide to the corresponding ninhydrin derivatives. Cyclization of the ninhydrins with furazan-3,4-diamine yielded the target tetracycles. Appropiate choice of substituents in ninhydrins led to a preference for one regioisomer in the target tetracycles. This permitted the synthesis of a variety of 8 -substituted heterocycles. In those instances where isomer formation was possible, structural assignments were confirmed by X-ray crystallography.

J. Heterocyclic Chem., 38, 1103 (2001).

As a part of a screening program to identify new compounds with pharmacological activity, we became interested in 2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren-9one 1. The only literature reference to compound 1 [1] describes the preparation by the reaction of ninhydrin and furazan-3,4-diamine [2] under acidic conditions. This reaction is analogous to that of ninhydrin with o-phenylenediamine and other heterocyclic diamines [3-5]. We were interested in preparing derivatives of $\mathbf{1}$ for biological testing by introducing functionality at positions $6-8$ of the tetracycle. We found that electrophilic aromatic substitution to 1 (bromination, nitration, or Friedel-Crafts acylation with benzoyl chloride) was unsatisfactory, presumably due to deactivation of the aromatic ring by the ketone and fused pyrazine moieties. Ultimately, our method of choice to synthesize these derivatives was to incorporate a suitable functional group into an indan-1-one for conversion to a substituted ninhydrin derivative $[6,7]$ before cyclization with furazan-3,4-diamine.

The use of substituted ninhydrins in the cyclization reaction introduces the possibility of regioisomer formation in the teracyclic products. Therefore, our strategy for preparing the 8 -substituted analogs of $\mathbf{1}$ was to incorporate a bulky substituent in the indane-1-one starting material in order to favor formation of one regioisomer after reaction of the corresponding ninhydrin derivative [3]. In those instances where isomer formation was possible, structural assignments were confirmed by X-ray crystallography.

An initial attempt to use a benzyloxy blocking group failed due to problems associated with attempted de-benzylation of the final product. Pyrazine and furazan moieties as found in $\mathbf{1}$ are known to be susceptible to chemical reduction $[8,9]$ used for removal of the benzyl group.

However, a benzoyl ester group was found to be a useful function for isomer control of certain tetracyclic targets (Scheme 1).

The preparation of 8 -substituted derivatives of $\mathbf{1}$ began with indanone ester 2 [10]. Electrophilic bromination of 2 with N -bromosuccinimide, followed by oxidation with dimethyl sulfoxide [7,11], gave the substituted ninhydrin 3 in 61% yield. Condensation of $\mathbf{3}$ with furazan-3,4-diamine

Scheme 1

4

1) $\mathrm{NaOH}, \mathrm{EtOH}$
2) $a q \mathrm{HCl}$

6
in a mixture of ethanol and acetic acid afforded the 8 -substituted tetracycle 4, the structure of which was confirmed by X-ray analysis. Although, concomitant formation of the 5 -substituted regioisomer of $\mathbf{4}$ was possible, this product was not isolated from the reaction mixture.
Ester cleavage of 4 provided a phenolic derivative that was useful for the introduction of additional functionality. Reaction of 4 with cesium carbonate in tetrahydrofuran [12] provided the phenol 5 in 94% yield. An earlier attempt at preparing 5 by saponification of $\mathbf{4}$ with sodium hydroxide in ethanol was unsuccessful. Instead, a small amount of the diacetal byproduct 6 was isolated. Similarly, treatment of 4 with lithium hydroxide in aqueous tetrahydrofuran did not produce the desired product. The lack of success, in generating the desired phenol 5 by the reaction of alkali metal hydroxides with 4 , may be attributed to the sensitivity of the pyrazine and furazan parts of the molecule to attack by a strong nucleophile.
Alkylation of 5 was accomplished by treating 5 with cesium carbonate in N, N-dimethylformamide to form the cesium phenoxide intermediate and then reacting with methyl bromoacetate to give the alkylated product 7. Likewise, methyl ether $\mathbf{8}$ was prepared by reaction of $\mathbf{5}$ with sodium hydride in N, N-dimethylformamide, followed by alkylation with iodomethane (Scheme 2). Mitsunobu reaction conditions were employed for the introduction of a range of aralkyl groups into the tetracycle. Thus, reactions of phenol 5 with aryl and heteroaryl alcohols in tetrahydrofuran afforded the alkylated products $\mathbf{9 - 1 2}$ in yields of 24-70\%.

1.) $\mathrm{NaH} / \mathrm{DMF}$ 2.) MeI

8

11

12

Several analogs were prepared with functionality attached at the 6-position of the tetracycle (Scheme 3). A 4-methyl substituent in the starting indan-1-one $\mathbf{1 3}$ served as a viable blocking group [13] to ensure a single regioisomer in the target tetracycles.
Trisubstituted indanone 13 [14] was demethylated with aluminum chloride in toluene to afford the phenol $\mathbf{1 4}$ in

Scheme 3

93% yield. Reaction of 14 with benzoyl chloride in acetone under basic conditions gave the benzoyl ester 15, which was oxidized by the previous method to give ninhydrin 16. In addition to $\mathbf{1 6}$, the gem-dibromo indanone $\mathbf{1 7}$ was isolated as a side product. Condensation of 16 with furazan-3,4-diamine under acidic conditions afforded the tetracycle $\mathbf{1 8}$ as a single regioisomer (the structure of $\mathbf{1 8}$ was confirmed by X-ray analysis). Ammonia in methanol was used for conversion of $\mathbf{1 8}$ to the phenol 19 in 97% yield. Unlike the cleavage of ester 4 , reaction of 18 with cesium carbonate did not result in a complete conversion to the desired phenol product. Alkylation of 19 with methyl bromoacetate and cesium carbonate gave the target ester tetracycle 20 (Scheme 4).

Cyclization reactions of ninhydrin derivatives without a suitable blocking function invariably led to mixtures of tetracyclic isomers. This was realized in the preparation of tetracycle ester 24 (Scheme 5). The indanone 21 [15] was alkylated with methyl bromoacetate, and the ester product 22 was oxidized to yield the ninhydrin derivative 23. Cyclization of $\mathbf{2 3}$ with furazan-3,4-diamine gave a mixture of the 6- and 7 -substituted ester tetracycles. However,

NBS / DMSO

23

recrystallization of the isomeric mixture from aqueous acetonitrile afforded the pure 6 -substituted isomer 24, which was structurally confirmed by X-ray analysis.
The observed X-ray structure of $\mathbf{4}$, which exists as a stacked dimer, is illustrated as an ORTEP diagram in Figure 1 and confirms the attachment of the benzoyloxy substituent at the 8 -position of the tetracycle. Crystal and refinement parameters for compound 4 as well as positional parameters and their estimated standard deviations are shown in Tables 1 and 2. Bond distances and angles for 4 are listed in Tables 3 and 4. Similarly, an X-ray analysis of compound $\mathbf{2 4}$ confirmed the attachment of the ester substituent at the 6-position of the tetracycle, and its ORTEP diagram and X-ray data are represented in Figure 2 and Tables 5-8, respectively.
We have described the preparation of a variety of derivatives of 2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren-9one. A series of substituted indan-1-ones were prepared and oxidized with N -bromosuccinimide and dimethyl sulfoxide to ninhydrin derivatives. Cyclization of the ninhydrins with furazan-3,4-diamine yielded the target tetracycles. Isomeric control at the tetracyclic products was made

Table 1
Crystal and Refinement Data for 4

formula	$\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{O}_{4}$
formula weight	344.3
crystal system	triclinic
space group	$\mathrm{P}-1$
a, \AA	$5.40(5)$
b, \AA	$16.64(5)$
c, \AA	$18.36(5)$
V, \AA^{3}	$1541.260(1)$
$\mathrm{Z} ;$ density (calc), g/cm	
crystal size, mm	$4 ; 1.62$
absorption coef., mm^{-1}	$0.2 \times 0.2 \times 0.2$
2q (max), deg.	10.85
reflections collected	100.28
independent reflections	5357
parameters refined	2346
final R indices	249
largest diff. Peak, e/ \AA^{3}	$\mathrm{R} 1=0.089, \mathrm{wR} 2=0.050$
	0.48

Table 2
Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $\left(\AA^{2}\right)$ for $\mathbf{4}[a, b]$

Atom	x	y	Z	U(eq)
O1	-0.240(4)	0.201(1)	-0.132(1)	0.072(5)
O2	-0.351(4)	0.161(1)	0.201(1)	0.076(5)
C3	-0.729(5)	0.073(2)	-0.108(1)	0.053(6)
N4	-0.561(4)	0.116(2)	0.161(1)	0.077(6)
N6	-0.254(4)	0.191(1)	0.026(1)	0.053(5)
O7	-0.550(4)	0.127(1)	-0.273(1)	0.083(5)
C10	-0.399(7)	0.089(2)	-0.343(2)	0.088(9)
N11	-0.197(4)	0.416(1)	-0.030(1)	0.059(5)
C13	-0.598(5)	0.109(2)	-0.154(1)	0.054(6)
O14	-0.045(3)	0.371(1)	0.276(1)	0.076(5)
N15	0.287(4)	0.304(2)	-0.159(1)	0.070(6)
C16	-0.385(6)	0.163(2)	-0.108(1)	0.060(7)
C17	-0.400(5)	0.158(2)	-0.030(1)	0.052(6)
C18	-0.133(5)	0.396(2)	0.030(1)	0.055(6)
C19	-0.628(5)	0.101(2)	-0.033(1)	0.051(5)
C20	0.100(5)	0.344(2)	0.030(1)	0.052(6)
N21	-0.693(4)	0.083(1)	0.029(1)	0.056(5)
C22	0.112(5)	0.338(2)	0.110(1)	0.059(6)
C23	-0.439(5)	0.483(2)	0.139(1)	0.065(7)
C24	-0.536(5)	0.121(2)	0.092(1)	0.049(6)
C25	-0.652(6)	0.087(2)	-0.232(2)	0.075(7)
N26	0.244(4)	0.309(1)	-0.029(1)	0.061(5)
O27	-0.434(6)	0.003(2)	-0.368(1)	0.123(7)
O28	0.069(5)	0.494(2)	0.367(1)	0.108(7)
C29	0.182(5)	0.332(2)	-0.090(1)	0.059(6)
C30	-0.037(5)	0.384(2)	-0.091(1)	0.057(6)
N31	-0.062(4)	0.386(2)	-0.161(1)	0.072(6)
C32	-0.321(6)	0.172(2)	0.087(1)	0.062(6)
C33	0.094(6)	0.421(2)	0.339(1)	0.064(7)
C34	-0.865(6)	0.035(2)	-0.261(1)	0.072(7)
C36	-0.487(5)	0.504(2)	0.215(1)	0.063(6)
C37	0.235(7)	0.278(2)	0.340(2)	0.083(8)
C38	-0.366(5)	0.470(2)	0.265(1)	0.072(7)
C39	-0.175(5)	0.410(2)	0.231(1)	0.067(7)
C40	-0.984(5)	0.001(2)	-0.214(1)	0.073(7)
C41	-0.097(5)	0.394(2)	0.161(1)	0.061(6)
C48	0.504(6)	0.268(2)	0.437(2)	0.083(8)
C49	0.475(9)	0.345(3)	0.470(2)	0.140(1)
C50	0.342(8)	0.404(3)	0.445(2)	0.130(1)
C63	-0.929(6)	0.017(2)	-0.138(1)	0.076(7)

Table 2 (continued)

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
C64	$0.203(7)$	$0.359(2)$	$0.373(2)$	$0.081(8)$
N65	$-0.219(5)$	$0.195(2)$	$0.156(1)$	$0.076(6)$
C66	$-0.272(9)$	$0.227(3)$	$-0.338(2)$	$0.120(1)$
C67	$-0.130(1)$	$0.280(3)$	$-0.370(3)$	$0.150(2)$
C68	$-0.298(7)$	$0.136(3)$	$-0.373(2)$	$0.084(9)$
C69	$-0.140(1)$	$0.103(3)$	$-0.444(3)$	$0.150(2)$
C70	$-0.060(1)$	$0.143(4)$	$-0.475(3)$	$0.150(2)$
C71	$0.014(9)$	$0.241(4)$	$-0.433(3)$	$0.160(1)$

[a] Numbers in parentheses are estimated standard deviations in the least significant digits; [b] $U_{\text {eq }}=(1 / 3) \sum_{\mathrm{i}} \sum_{\mathrm{j}} U_{\mathrm{ij}} \mathrm{a}^{*}{ }_{\mathrm{i}} \mathrm{a}^{*}{ }_{\mathrm{j}} \mathbf{a}_{\mathrm{i}} \cdot \mathbf{a}_{\mathrm{j}}$.

Table 3

	Bond Distances (Å) for 4 [a]				
Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
O1	C16	$1.18(4)$	O2	N4	$1.42(4)$
O2	N65	$1.35(4)$	C3	C13	$1.39(4)$
C3	C19	$1.40(4)$	C3	C63	$1.40(5)$
N4	C24	$1.32(4)$	N6	C17	$1.26(4)$
N6	C32	$1.31(4)$	O7	C25	$1.30(4)$
O8	N15	$1.40(3)$	O8	N31	$1.39(3)$
O9	C22	$1.21(4)$	C10	O27	$1.35(5)$
C10	C68	$1.24(6)$	N11	C18	$1.30(3)$
N11	C30	$1.37(4)$	C13	C25	$1.38(4)$
O14	C33	$1.39(4)$	O14	C39	$1.40(4)$
N15	C29	$1.31(4)$	C16	C17	$1.46(4)$
C18	C47	$1.43(4)$	C19	N21	$1.31(3)$
C20	N26	$1.29(3)$	N21	C24	$1.39(4)$
C23	C36	$1.33(4)$	C23	C47	$1.44(5)$
C24	C32	$1.45(5)$	C25	C34	$1.42(5)$
N26	C29	$1.35(4)$	O28	C33	$1.14(5)$
C32	N65	$1.32(4)$	C34	C40	$1.35(5)$
C36	C38	$1.39(4)$	C37	C42	$1.37(6)$
C37	C64	$1.26(6)$	C38	C39	$1.42(5)$
C39	C41	$1.29(4)$	C40	C63	$1.36(4)$
C41	C47	$1.47(4)$	C42	C48	$1.39(5)$
C48	C49	$1.21(7)$	C49	C50	$1.42(7)$
C50	C64	$1.47(6)$	C67	C66	$1.44(7)$
C67	C71	$1.35(7)$	C66	C68	$1.43(7)$
C68	C69	$1.47(6)$	C69	C70	$1.13(8)$

[a] Numbers in parentheses are estimated standard deviations in the least significant digits.

Table 4
Bond Angles (deg) for 4 [a]

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
N4	O2	N65	$111.3(19)$	C13	C3	C19	$109.5(24)$
C13	C3	C63	$121.6(23)$	C19	C3	C63	$129.0(25)$
O2	N4	C24	$102.3(21)$	C17	N6	C32	$111.1(24)$
N15	O8	N31	$113.8(17)$	O27	C10	C68	$132.6(33)$
C18	N11	C30	$112.8(22)$	C3	C13	C25	$120.3(26)$
C33	O14	C39	$119.4(22)$	O8	N15	C29	$102.9(21)$
O1	C16	C17	$128.1(26)$	N6	C17	C16	$127.7(26)$
N11	C18	C47	$128.9(25)$	C3	C19	N21	$130.4(25)$
C19	N21	C24	$112.2(21)$	C36	C23	C47	$117.6(25)$
N4	C24	N21	$124.9(25)$	N4	C24	C32	$112.5(22)$
N21	C24	C32	$122.7(21)$	O7	C25	C13	$120.8(28)$
O7	C25	C34	$119.5(25)$	C13	C25	C34	$118.0(27)$

Table 4 (continued)

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
C20	N26	C29	$112.0(22)$	N15	C29	N26	$126.2(25)$
N15	C29	C30	$110.4(22)$	N26	C29	C30	$123.1(22)$
N11	C30	C29	$124.0(22)$	N11	C30	N31	$127.3(24)$
C29	C30	N31	$108.5(22)$	O8	N31	C30	$104.5(21)$
N6	C32	C24	$126.2(24)$	N6	C32	N65	$129.1(28)$
C24	C32	N65	$104.7(23)$	O14	C33	O28	$122.5(28)$
C25	C34	C40	$118.5(25)$	C23	C36	C38	$125.4(26)$
C42	C37	C64	$126.4(32)$	C36	C38	C39	$116.2(23)$
O14	C39	C38	$120.9(22)$	O14	C39	C41	$116.7(25)$
C38	C39	C41	$122.1(27)$	C34	C40	C63	$125.4(29)$
C39	C41	C47	$120.5(26)$	C37	C42	C48	$116.2(34)$
C18	C47	C23	$130.2(25)$	C18	C47	C41	$112.6(24)$
C23	C47	C41	$117.3(22)$	C42	C48	C49	$118.7(37)$
C48	C49	C50	$129.2(39)$	C49	C50	C64	$110.5(37)$
C3	C63	C40	$115.8(27)$	O2	N65	C32	$109.1(24)$
C37	C64	C50	$118.4(35)$	C66	C67	C71	$118.4(48)$
C67	C66	C68	$124.9(38)$	C10	C68	C66	$125.8(34)$
C10	C68	C69	$122.6(40)$	C66	C68	C69	$110.5(37)$
C68	C69	C70	$124.7(53)$				

[a] Numbers in parentheses are estimated standard deviations in the least significant digits.

Figure 1. ORTEP Plot of compound 4.
possible by introduction of a suitable blocking group in the starting indan-1-ones.

EXPERIMENTAL

Melting points were determined on a Mel-Temp or Electrothermal apparatus and are uncorrected. Elemental Analysis was performed by Quantitative Technologies, Inc. (Whitehouse, N. J.). The Proton Nuclear Magnetic Resonance spectra were recorded on a Varian Unity 400 NMR spectrometer with chemical shifts reported in ppm relative to internal tetramethylsilane. Mass spectra were recorded on a Micromass Platform LC Mass spectrometer operating at atmospheric pressure. Infrared spectra were recorded as potassium bromide disks on a Mattson NU 30,000 FT IR or a Biorad FTS 45 IR spectrometer. Reactions were usually run under a nitrogen atmosphere, and solutions were concentrated at reduced

Table 5
Crystal and Refinement Data for 24

formula	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{5}$
formula weight	312.2
crystal system	monoclinic
space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a, \AA	$22.26(5)$
b, \AA	$5.28(5)$
c, \AA	$24.87(6)$
$\mathrm{V}, \AA \AA^{3}$	$1281.190(1)$
Z ; density (calc), g/cm	
crystal size, mm	$4 ; 1.48$
absorption coef., mm^{-1}	$0.2 \times 0.2 \times 0.2$
2q (max), deg.	9.16
reflections collected	100.0
independent reflections	4401
parameters refined	1924
final R indices	209
largest diff. Peak, e/ \AA^{3}	$\mathrm{R} 1=0.058, \mathrm{wR} 2=0.033$
	0.23

Table 6
Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters $\left(\AA^{2}\right)$ for 24 [a,b]

Atom	x	y	z	$U(\mathrm{eq})$
O1	$1.3094(3)$	$-1.0600(6)$	$1.3267(3)$	$0.104(2)$
O2	$1.1408(3)$	$-0.7042(6)$	$1.2172(2)$	$0.094(2)$
O3	$0.3456(3)$	$0.0588(7)$	$0.4950(3)$	$0.118(2)$
O4	$0.7973(3)$	$0.2299(6)$	$1.0441(3)$	$0.137(2)$
O5	$1.1867(3)$	$-1.1876(7)$	$1.1580(3)$	$0.130(2)$
N6	$0.5744(3)$	$0.1823(7)$	$0.7832(3)$	$0.106(2)$
N9	$0.3839(4)$	$0.2065(8)$	$0.5696(3)$	$0.115(3)$
C10	$0.7152(4)$	$-0.1790(9)$	$0.8682(4)$	$0.093(3)$
C11	$0.8908(4)$	$-0.1351(9)$	$1.0729(4)$	$0.101(3)$
C12	$0.6806(4)$	$0.0384(9)$	$0.8743(4)$	$0.097(3)$
C13	$1.0517(4)$	$-0.5232(9)$	$1.1624(4)$	$0.094(3)$
C14	$0.5283(4)$	$-0.1132(9)$	$0.6714(4)$	$0.093(3)$
C15	$0.7919(4)$	$0.069(1)$	$1.0056(4)$	$0.108(3)$
C16	$1.2070(4)$	$-1.050(1)$	$1.2107(4)$	$0.087(3)$
C17	$0.9265(4)$	$-0.4682(9)$	$1.0359(4)$	$0.087(3)$
C18	$1.0141(4)$	$-0.193(1)$	$1.1979(4)$	$0.105(3)$
C19	$1.1108(4)$	$-0.8325(9)$	$1.1443(4)$	$0.100(3)$
C20	$0.8481(4)$	$-0.2755(9)$	$0.9945(4)$	$0.082(3)$
C21	$0.4970(4)$	$0.1004(9)$	$0.6780(4)$	$0.098(3)$
C22	$1.0933(4)$	$-0.387(1)$	$1.2414(4)$	$0.096(3)$
C23	$1.4002(4)$	$-1.276(1)$	$1.3935(4)$	$0.112(3)$

[a] Numbers in parentheses are estimated standard deviations in the least significant digits; [b] $U_{\mathrm{eq}}=(1 / 3) \sum_{\mathrm{i}} \sum_{\mathrm{j}} U_{\mathrm{ij}} \mathrm{a}^{*}{ }_{\mathrm{i}} \mathrm{a}^{*}{ }_{\mathrm{j}} \mathbf{a}_{\mathrm{i}} \cdot \mathbf{a}_{\mathrm{j}}$.
pressure on a rotary evaporator. Flash chromatography was performed with EM Science silica gel 60, 230-400 mesh ASTM.

Benzoic Acid 2,2-Dihydroxy-1,3-dioxo-indan-4-yl Ester (3)
To a solution of 2 [10] ($2.0 \mathrm{~g}, 7.9 \mathrm{mmol}$) in 40 mL of dimethyl sulfoxide was added N-bromosuccinimide ($2.9 \mathrm{~g}, 16 \mathrm{mmol}$). The reaction mixture was stirred at 60° for 3 hours and then at 80° for 4 hours with a vacuum line attached to the top of the reaction flask condenser. The reaction mixture was cooled to room temperature and then poured into 200 mL of water. The product was extracted with three portions of 100 mL of dichloromethane, and then the combined organic extracts were dried (sodium sulfate), filtered

Table 7
Bond Distances (\AA) for 24 [a]

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
O1	C16	$1.304(5)$	O2	C13	$1.358(6)$
O2	C19	$1.420(5)$	O3	N7	$1.392(6)$
O3	N9	$1.390(6)$	O4	C15	$1.201(6)$
O5	C16	$1.177(6)$	N6	C12	$1.293(6)$
N6	C21	$1.376(6)$	N7	C14	$1.320(6)$
N8	C10	$1.300(6)$	N8	C14	$1.386(6)$
N9	C21	$1.312(6)$	C10	C12	$1.464(7)$
C10	C20	$1.474(6)$	C11	C15	$1.480(7)$
C11	C18	$1.398(6)$	C11	C20	$1.388(7)$
C13	C17	$1.410(6)$	C13	C22	$1.404(7)$
C14	C21	$1.411(7)$	C17	C20	$1.383(7)$
C18	C22	$1.378(7)$			

[a] Numbers in parentheses are estimated standard deviations in the least significant digits.
and evaporated. The residue was purified by flash chromatography (eluting with 50 and 70% ethyl acetate in hexane, gradient elution) to yield $1.4 \mathrm{~g}(61 \%)$ of $\mathbf{3}$. A sample recrystallized from water had mp 133-136 ${ }^{\circ}$; ir: 3491, 3412, 3353, 1755, 1742, 1719 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 7.55(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.77(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.19(\mathrm{~m}, 3 \mathrm{H})$; $\mathrm{ms}: m / z 280 \mathrm{M}^{-}-\mathrm{H}_{2} \mathrm{O}$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}$: C, 64.43; H, 3.38. Found: C, 64.11; H, 3.57.

Benzoic Acid 9-Oxo-9H-2-oxa-1,3,4,10-tetraazacyclopenta-[b]fluoren-8-yl Ester (4).

A mixture of $\mathbf{3}(1.2 \mathrm{~g}, 4.0 \mathrm{mmoles}$) and furazan-3,4-diamine (0.40 $\mathrm{g}, 3.9$ mmoles) in 12 mL of ethanol and 12 mL of glacial acetic acid was stirred at room temperature for 18 hours and then heated at reflux for 6 hours. The precipitated solid was filtered and washed with water to yield $0.62 \mathrm{~g}(46 \%)$ of $\mathbf{4}, \mathrm{mp} 215-217^{\circ}$; ir: 1741, 1597, 1264, 1229, 1208, $1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (TFA-d): $\delta 7.67(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.81-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 344 \mathrm{M}^{-}$

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 62.80; H, 2.34; N, 16.27. Found: C, 62.62; H, 2.19; N, 16.07.

8-Hydroxy-2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren-9-one (5).

A mixture of $\mathbf{4}(0.87 \mathrm{~g}, 2.5$ mmoles) and cesium carbonate (1.7 $\mathrm{g}, 5.3$ mmoles) in 50 mL of tetrahydrofuran was stirred at room temperature for 5 days. The precipitated solid was filtered, washed with fresh tetrahydrofuran, and dissolved in 100 mL of water. The aqueous mixture was acidified with 1.0 M hydrochloric acid to $\mathrm{pH} 2-3$. The precipitated solid was filtered and rinsed with water to yield $0.57 \mathrm{~g}(94 \%)$ of $\mathbf{5}$. A sample recrystallized from methanol had $\mathrm{mp} \mathrm{305}{ }^{\circ}$; ir: 3431, 1711, 1601, 1443, 1306, $1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{THF}-\mathrm{d}_{8}\right): \delta 7.22(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 9.94(\mathrm{bs}, 1 \mathrm{H})$; ms: $\mathrm{m} / \mathrm{z} 240 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $55.01 ; \mathrm{H}, 1.68 ; \mathrm{N}, 23.33$. Found: C, 55.09; H, 1.99; N, 23.03.

9,9-Diethoxy-9H-2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren8 -ol (6).

To a mixture of $\mathbf{4}(0.21 \mathrm{~g}, 0.60 \mathrm{mmoles})$ in 10 mL of ethanol was added 0.60 mL of an aqueous solution of 1.0 M sodium hydroxide

Table 8
Bond Angles (deg) for $\mathbf{2 4}$ [a]

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom3	Angle
C13	O2	C19	$117.8(4)$	N7	O3	N9	$112.3(3)$
C12	N6	C21	110.4	O3	N7	C14	$103.5(4)$
C10	N8	C14	$109.0(4)$	O3	N9	C21	$104.3(4)$
N8	C10	C12	$126.1(4)$	N8	C10	C20	$127.4(5)$
C12	C10	C20	$106.5(4)$	C15	C11	C18	$128.8(5)$
C15	C11	C20	$110.8(4)$	C18	C11	C20	$120.4(5)$
N6	C12	C10	$125.5(4)$	O2	C13	C17	$124.0(4)$
O2	C13	C22	$115.2(4)$	C17	C13	C22	$120.8(5)$
N7	C14	N8	$124.9(5)$	N7	C14	C21	$110.3(4)$
N8	C14	C21	$124.8(4)$	O4	C15	C11	$129.1(5)$
O1	C16	O5	$126.7(5)$	C13	C17	C20	$117.0(4)$
C11	C18	C22	$118.5(4)$	C10	C20	C11	$109.8(4)$
C10	C20	C17	$127.8(4)$	C11	C20	C17	$122.3(4)$
N6	C21	N9	$125.8(5)$	N6	C21	C14	$124.5(4)$
N9	C21	C14	$109.7(4)$	C13	C22	C18	$120.9(4)$

[a] Numbers in parentheses are estimated standard deviations in the least significant digits.

Figure 2. ORTEP Plot of compound 24.
(0.60 mmoles). The reaction mixture was heated at reflux for 18 hours. The reaction was monitored by thin layer chromatography, and additional aqueous sodium hydroxide was added as needed until all of the starting material $\mathbf{4}$ was consumed. The reaction mixture was evaporated to give a residue, which was diluted with 10 mL of water and then acidified with aqueous 1.0 M hydrochloric acid to pH 2-3. The resulting precipitate was isolated by filtration and purified by flash chromatography (eluting with 30% ethyl acetate in hexane) to give $0.12 \mathrm{~g}(6 \%)$ of $\mathbf{6}$; ir: $3285,1598,1441,1309,1095,1025$ cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{THF}-\mathrm{d}_{8}\right): \delta 1.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.69-3.81(\mathrm{~m}$, $2 \mathrm{H}), 3.82-3.95(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 314 \mathrm{M}^{-}$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 57.32; H, 4.49; $\mathrm{N}, 17.83$. Found: C, 57.39; H, 4.52; N, 17.64.
(9-Oxo-9H-2-oxa-1,3,4,10-tetraaza-cyclopenta[b]fluoren8 -yloxy) Acetic Acid Methyl Ester (7).

A mixture of $5(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$, cesium carbonate $(0.37 \mathrm{~g}, 1.1$ $\mathrm{mmol})$ and 0.10 mL of methyl bromoacetate $(0.17 \mathrm{~g}, 1.1 \mathrm{mmol})$ in 10 mL of acetone was heated at reflux for 18 hours. The precipitated
solid was filtered to give 0.48 g of the cesium salt of the starting phenol. The salt was combined with an additional $0.13 \mathrm{~mL}(0.21 \mathrm{~g}, 1.4$ mmol) of methyl bromoacetate in 10 mL of N, N-dimethylformamide. The reaction mixture was heated at 60° for 4 hours, stirred at room temperature for 18 hours, and added to a mixture of ice and water. The precipitated solid was filtered and purified by flash chromatography (eluting with 30% ethyl acetate in hexane) to yield 0.11 $\mathrm{g}(27 \%)$ of 7. A sample recrystallized from aqueous acetonitrile had mp 205-206 ${ }^{\circ}$; ir: 1753, 1727, 1592, 1486, 1313, $1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (TFA-d): $\delta 4.05(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.46(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.16$ (m, 2H); ms: m/z $312 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{5}$: C, $53.85 ; \mathrm{H}, 2.58 ; \mathrm{N}, 17.94$. Found: C, 53.80; H, 2.56; N, 17.83.

8-Methoxy-2-oxa-1,3,4,10-tetraazacyclopenta[$b]$ fluoren-9-one (8).
To a solution of $5(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$ in 50 mL of N, N-dimethylformamide was added sodium hydride $(0.09 \mathrm{~g}, 2.3 \mathrm{mmol}$ of 60% dispersion in mineral oil), followed by 0.21 mL of iodomethane (2.3 $\mathrm{mmol})$. The reaction mixture was stirred at 60° for 2 hours, and the solvent was evaporated to give a residue, which was dissolved in
ethyl acetate and washed with three 100 mL portions of water. The organic layer was dried (magnesium sulfate), filtered and evaporated. The residue was purified by flash chromatography (eluting with 20% ethyl acetate in dichloromethane) and recrystallized from acetonitrile/hexane to yield $0.12 \mathrm{~g}(22 \%)$ of $\mathbf{8}, \mathrm{mp} 291-293^{\circ}$; ir: 1716, 1588, 1485, 1434, 1308, $1284 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (TFA-d): $\delta 4.49$ (s, 3H), 7.83 (d, J = $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{t}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H})$; ms: $\mathrm{m} / \mathrm{z} 254 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $56.34 ; \mathrm{H}, 2.48 ; \mathrm{N}, 21.68$. Found: C, 56.70; H, 2.38; N, 22.04.

8-Benzyloxy-2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren-9-one (9).

A mixture of $5(1.0 \mathrm{~g}, 4.2 \mathrm{mmol}), 0.47 \mathrm{~mL}$ of phenyl methanol ($0.50 \mathrm{~g}, 4.6 \mathrm{mmol}$), triphenylphosphine ($1.3 \mathrm{~g}, 5.0 \mathrm{mmol}$), 0.58 mL of triethylamine ($0.42 \mathrm{~g}, 4.2 \mathrm{mmol}$) and 0.79 mL of diethyl azodicarboxylate ($0.87 \mathrm{~g}, 5.0 \mathrm{mmol}$) in 30 mL of tetrahydrofuran was stirred at room temperature for 18 hours. The precipitated solid was filtered and washed with tetrahydrofuran. The crude product was purified by flash chromatography (eluting with chloroform) to yield $0.38 \mathrm{~g}(27 \%)$ of 9 . A sample recrystallized from acetonitrile had mp 236-237 ; ir: 1723, 1588, 1487, 1438, 1307, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (THF-d ${ }_{8}$): $\delta 5.42(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 2 H), 7.50-7.60 (m, 3H), 7.83 (d, J=7.3 Hz, 2H); ms: $m / z 330 \mathrm{M}^{-}$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 65.45; H, 3.05; N, 16.96. Found: C, 65.22; H, 2.84; N, 17.01.

8-(Furan-2-ylmethoxy)-2-oxa-1,3,4,10-tetraazacyclopenta[b]flu-oren-9-one (10).
A mixture of $5(2.0 \mathrm{~g}, 8.3 \mathrm{mmol}), 0.79 \mathrm{~mL}$ of furan-2-yl-methanol ($0.90 \mathrm{~g}, 9.2 \mathrm{mmol}$), triphenylphosphine $(2.6 \mathrm{~g}, 10 \mathrm{mmol}), 1.2 \mathrm{~mL}$ of triethylamine ($0.84 \mathrm{~g}, 8.3 \mathrm{mmol}$) and diethyl azodicarboxylate (1.7 $\mathrm{g}, 10 \mathrm{mmol}$) in 60 mL of tetrahydrofuran was stirred at room temperature for 18 hours. The solvent was evaporated, and the residue was purified by flash chromatography (eluting with $30-50 \%$ ethyl acetate in hexane, gradient elution). The chromatographed material was triturated in water to give $0.64 \mathrm{~g}(24 \%)$ of $\mathbf{1 0}, 184-185^{\circ}$; ir: $1719,1588,1484,1429,1299,1276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (THF-d ${ }_{8}$): $\delta 5.36$ $(\mathrm{s}, 2 \mathrm{H}), 6.38-6.42(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.95(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 320 \mathrm{M}^{-}$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 60.01 ; $\mathrm{H}, 2.52 ; \mathrm{N}, 17.49$. Found: C, 59.71; H, 2.67; N, 17.27.

8-(Pyridin-4-ylmethoxy)-2-oxa-1,3,4,10-tetraazacyclopenta-[b]fluoren-9-one (11).

A mixture of $5(2.0 \mathrm{~g}, 8.3 \mathrm{mmol})$, pyridin-4-yl-methanol $(1.0 \mathrm{~g}$, 9.2 mmol), triphenylphosphine ($2.6 \mathrm{~g}, 10 \mathrm{mmol}$), 1.2 mL of triethylamine ($0.84 \mathrm{~g}, 8.3 \mathrm{mmol}$) and diethyl azodicarboxylate (1.7 g , 10 mmol) in 60 mL of tetrahydrofuran was stirred at room temperature for 18 hours. The precipitated solid was filtered and washed with tetrahydrofuran to yield $1.9 \mathrm{~g}(70 \%)$ of $\mathbf{1 1}, \mathrm{mp} \mathrm{200-201}{ }^{\circ}$; ir: 1731, 1589, 1439, 1304, 1279, $1027 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (TFA-d): $\delta 6.07$ ($\mathrm{s}, 2 \mathrm{H}$), $7.89(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39-8.47(\mathrm{~m}, 2 \mathrm{H}), 8.89(\mathrm{~d}, \mathrm{~J}=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 9.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{ms}: m / z 331 \mathrm{M}^{-}$.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 61.63; H, 2.74; N, 21.14. Found: C, 61.49; H, 3.05; N, 21.34.
8-(Thiophen-2-ylmethoxy)-2-oxa-1,3,4,10-tetraazacyclopenta-[b]fluoren-9-one (12).
Prepared from 5 ($1.0 \mathrm{~g}, 4.2 \mathrm{mmoles}$) and 0.43 mL of thiophen-2-yl-methanol ($0.52 \mathrm{~g}, 4.6$ mmoles) by the procedure described
for the preparation of $\mathbf{1 0}$ to yield $0.38 \mathrm{~g}(27 \%)$ of $\mathbf{1 2}$. The crude product was purified by flash chromatography (eluting with chloroform). A sample recrystallized from acetonitrile had mp 198$200^{\circ}$; ir: $1723,1588,1483,1438,1300,1275 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (THF-d ${ }_{8}$): $\delta 5.59(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.40-7.45 (m, 1H), $7.57(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-8.00(\mathrm{~m}, 2 \mathrm{H})$; $\mathrm{ms}: m / z 336 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 57.14 ; \mathrm{H}, 2.40 ; \mathrm{N}, 16.66$. Found: C, 56.94; H, 2.32; N, 16.78.
6-Hydroxy-4,5-dimethylindan-1-one (14).
A suspension of aluminum chloride ($33.2 \mathrm{~g}, 249 \mathrm{mmol}$) in 300 mL of toluene was treated with $\mathbf{1 3}$ [14] ($22.7 \mathrm{~g}, 119 \mathrm{mmol}$). The mixture was stirred at reflux for 1 hour, then added to 2.75 kg of ice and water. The solid was filtered, stirred in 1.5 L of 20% methanol in water, and filtered again to give $19.6 \mathrm{~g}(93 \%)$ of $\mathbf{1 4}$. A sample recrystallized from aqueous 2-propanol had mp 245° (dec); ir: $3309,1674,1600,1437,1324,1298 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}): $\delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.52(\mathrm{~m}, 2 \mathrm{H})$, 2.82-2.85 (m, 2H), $6.82(\mathrm{~s}, 1 \mathrm{H}), 9.60(\mathrm{~s}, 1 \mathrm{H})$; ms: $\mathrm{m} / \mathrm{z} .177 \mathrm{M}^{+}+1$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 74.98; H, 6.86. Found: C, 74.85; H, 6.78.

Benzoic Acid 6,7-Dimethyl-3-oxo-indan-5-yl Ester (15).

A suspension of $\mathbf{1 4}(21.0 \mathrm{~g}, 119 \mathrm{mmol})$ and cesium carbonate ($42.9 \mathrm{~g}, 132 \mathrm{mmol}$) in 600 mL of acetone was treated dropwise with 14.9 mL of benzoyl chloride ($18.0 \mathrm{~g}, 128 \mathrm{mmol}$). The mixture was stirred for 24 hours and added to 3.0 kg of ice and water. The solid was filtered, stirred in 1.0 L of 20% methanol in water, and filtered again to give $31.5 \mathrm{~g}(94 \%)$ of $\mathbf{1 5}$. A sample recrystallized from aqueous acetonitrile had $\mathrm{mp} 125-127^{\circ}$; ir: 1736, 1703, 1601, 1442, 1249, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 2.13$ $(\mathrm{s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.02(\mathrm{~m}, 2 \mathrm{H}), 7.29$ $(\mathrm{s}, 1 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.76(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 2 \mathrm{H})$; $\mathrm{ms}: m / z 279 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 77.12 ; \mathrm{H}, 5.75$. Found: C, 77.02; H, 5.76.

Benzoic Acid 7,8-Dimethyl-9-oxo-9H-2-oxa-1,3,4,10-tetraaza-cyclopenta[b]-fluoren-6-yl Ester (18).

A mixture of $\mathbf{1 5}$ ($16.3 \mathrm{~g}, 58.1 \mathrm{mmol}$) and N-bromosuccinimide ($20.9 \mathrm{~g}, 117 \mathrm{mmol}$) in 150 mL of dimethyl sulfoxide was heated at 40° for 3 hours. A vacuum line was attached to the top of the reaction flask condenser, and the mixture was heated at 80° for 4 hours. The cooled reaction mixture was added to 1.5 L of brine and extracted with four 350 mL portions of dichloromethane. The combined extracts were washed with three 500 mL portions of 5% aqueous sodium bicarbonate solution and two 500 mL portions of brine. The organic layer was dried (sodium sulfate) and evaporated. The residue was purified by flash chromatography (eluting with 50% ethyl acetate in hexane) to yield $11.4 \mathrm{~g}(64 \%)$ of benzoic acid 6,7-dimethyl-1,2,3-trioxoindan-5-yl ester 16 as an oil; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 2.24$ (s, 3H), 2.69 (s, 3H), 7.46 (s, 1H), 7.57-7.64 (m, 2H), 7.73-7.81 (m, 1H), 8.12-8.19 (m, 2H); ms: m/z $308 \mathrm{M}^{-}$.

An additional chromatography product ($0.60 \mathrm{~g}, 8 \%$) was identified as benzoic acid 2,2-dibromo-6,7-dimethyl-3-oxo-indan-5-yl ester 17. A sample recrystallized from ethyl acetate/hexane had mp 180-182 ${ }^{\circ}$; ir: 1723, 1598, 1253, 1243, 1221, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}): $\delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 7.55-7.66(\mathrm{~m}$, 3 H), 7.70-7.78 (m, 1H), 8.11-8.17 (m, 2H); ms: $\mathrm{m} / \mathrm{z}, 439 \mathrm{M}^{+}+1$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}$: C, 49.35 ; $\mathrm{H}, 3.22$. Found: C, 49.47; H, 3.22.

A mixture of intermediate $\mathbf{1 6}(11.4 \mathrm{~g}, 37 \mathrm{mmol})$ and furazan-3,4-diamine ($3.8 \mathrm{~g}, 38 \mathrm{mmol}$) in 25 mL of ethanol and 25 mL of glacial acetic acid was stirred at reflux for 4 hours. The precipitated solid was filtered, stirred in 150 mL of 50% methanol in water, and filtered again. Recrystallization of the final solid from aqueous acetonitrile gave $4.5 \mathrm{~g}(33 \%)$ of $\mathbf{1 8}, \mathrm{mp} 245^{\circ}$ (dec); ir: 1719, 1584, 1241, 1199, 1086, $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (TFA-d): δ $2.56(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 372 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 64.52 ; \mathrm{H}, 3.25 ; \mathrm{N}, 15.05$. Found: C, 64.38; H, 3.42; N, 14.94.

6-Hydroxy-7,8-dimethyl-2-oxa-1,3,4,10-tetraazacyclopenta-[b]fluoren-9-one (19).
A suspension $\mathbf{1 8}(5.0 \mathrm{~g}, 13.4 \mathrm{mmol})$ in 100 mL of methanol was treated with a solution of 50 mL of 2.0 M ammonia in methanol. The mixture was stirred at room temperature for 18 hours, then added to 500 mL of water. The mixture was filtered, and the filtrate was adjusted to pH 2 by the addition of 4.0 M hydrochloric acid. The precipitated solid was filtered, stirred in 100 mL of 20% methanol in water, and filtered again to yield 3.5 $\mathrm{g}(97 \%)$ of 19. A sample recrystallized from aqueous acetonitrile had mp 280° (dec.); ir: 3237, 1716, 1591, 1548, 1318, 1291 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{THF}-\mathrm{d}_{8}\right): \delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 7.35(\mathrm{~s}$, $1 \mathrm{H}), 10.82(\mathrm{bs}, 1 \mathrm{H}) ; \mathrm{ms}: m / z 267 \mathrm{M}^{-}-1$.
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 58.21 ; $\mathrm{H}, 3.01 ; \mathrm{N}, 20.89$. Found: C, 58.28; H, 3.13; N, 20.63.
(7,8-Dimethyl-9-oxo-9H-2-oxa-1,3,4,10-tetraazacyclopenta-[b]fluoren-6-yloxy) Acetic Acid Methyl Ester (20).
A mixture of $\mathbf{1 9}(1.0 \mathrm{~g}, 3.7 \mathrm{mmol})$, cesium carbonate $(2.4 \mathrm{~g}, 7.4$ $\mathrm{mmol})$, and 1.0 mL of methyl bromoacetate ($1.6 \mathrm{~g}, 10.5 \mathrm{mmol}$) in 25 mL of acetonitrile was stirred at reflux for 3 hours. The precipitated solid was filtered, stirred in 100 mL of 25% methanol in water, and filtered again. Recrystallization from acetonitrile gave $0.55 \mathrm{~g}(42 \%)$ of $\mathbf{2 0}, \mathrm{mp} 230^{\circ}$ (dec.); ir: 1723, 1585, 1288, 1224, 1146, $1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{nmr}($ TFA-d): $\delta 2.51$ ($\mathrm{s}, 3 \mathrm{H}$), 2.89 ($\mathrm{s}, 3 \mathrm{H}$), $4.08(\mathrm{~s}, 3 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: m / z 340 \mathrm{M}^{-}$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}$: C, 56.47 ; H, 3.55; N, 16.46. Found: C, 56.55; H, 3.55; N, 16.50.

(1-Oxo-indan-5-yloxy) Acetic Acid Methyl Ester (22).

A suspension of 21 [15] ($16.0 \mathrm{~g}, 108 \mathrm{mmol}$), cesium carbonate ($38.7 \mathrm{~g}, 119 \mathrm{mmol}$) and 10.8 mL of methyl bromoacetate (17.5 g , 114 mmol) in 700 mL of acetone was stirred at room temperature for 24 hours. The mixture was filtered, and the filter cake was washed several times with fresh acetone. The combined filtrates were evaporated, and the residue was recrystallized from ethyl acetate/hexane to yield $18.2 \mathrm{~g}(76 \%)$ of $\mathbf{2 2}, \mathrm{mp} \mathrm{116-118}{ }^{\circ}$; ir: 1763, 1692, 1614, 1587, 1270, $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuterochloroform): $\delta 2.61(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}$); ms: $m / z 221 \mathrm{M}^{+}+1^{+}$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$: C, 65.45; H, 5.49. Found: C, 65.44; H, 5.51.
(9-Oxo-9H-2-oxa-1,3,4,10-tetraazacyclopenta[b]fluoren-6yloxy) Acetic Acid Methyl Ester (24).

Intermediate 23 was prepared from $22(6.0 \mathrm{~g}, 27.2 \mathrm{mmol})$ by the procedure described for the preparation of $\mathbf{1 6}$ to yield 0.70 g (10%) of (1,2,3-trioxo-indan-5-yloxy)-acetic acid methyl ester as an oil. The crude product was purified by flash chromatography (eluting with 3% methanol in dichloromethane); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuterochloroform): $\delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 248 \mathrm{M}^{-}$.

A mixture of $23(0.65 \mathrm{~g}, 3.0 \mathrm{mmol})$ and furazan-3,4-diamine $(0.31 \mathrm{~g}, 3.1 \mathrm{mmol})$ in 4.0 mL of ethanol and 4.0 mL of glacial acetic acid was stirred at reflux for 4 hours. The cooled reaction mixture was added to 100 g of ice and water and extracted with four 50 mL portions of ethyl acetate. The combined extracts were washed with three 150 mL portions of 5% aqueous sodium bicarbonate solution and one 150 mL portion of brine. The organic layer was dried (sodium sulfate) and evaporated. The residue was purified by flash chromatography (eluting with 40% ethyl acetate in hexane) to yield $0.26 \mathrm{~g}(19 \%)$ of $\mathbf{2 4}$. A sample recrystallized from aqueous acetonitrile had $\mathrm{mp} 203-205^{\circ}$; ir: 1723, 1615, 1591, 1301, 1270, $1251 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (TFA-d): δ 4.09 (s, 3H), 5.16 (s, 2H), 7.61 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (s, 1H), 8.27 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$); ms: m/z $312 \mathrm{M}^{-}$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{5}$: C, $53.85 ; \mathrm{H}, 2.58 ; \mathrm{N}, 17.94$. Found: C, 53.65; H, 2.31; N, 17.70.

X-ray Structure Determination of 4.

Compound $\mathbf{4}$ crystallized as yellow needles from ethanol solutions. X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer using CuK radiation ($\lambda=1.54184 \AA$). The cell constants and the orientation matrix for data collection were determined from centered angles of 25 reflections. X-ray diffraction data were collected at $23^{\circ} \mathrm{C}$ using the omega scan technique with a variable omega scan rate from 2° to 20° per minute. The data were collected to a maximum 2θ of 100.28°. A total of 5357 reflections were collected, of which 2346 were unique and not systematically absent. Lorentz and polarization corrections were applied to the data as well as an empirical absorption correction based on a series of psi scans. The crystal structure was determined by direct methods using SIR-92. A total of 328 reflections with $\mathrm{E}>1.90$ were used to produce a phase set with an absolute figure of merit of 0.76 . All 52 heavy atoms in the structure were located from the E map calculated using this phase set. Hydrogen atom positions were located in subsequent difference fouriers and added to the structure, but their positions were not refined. The heavy atom parameters including anisotropic temperature factors were refined by full matrix least squares using 893 reflections with intensity greater than three times their standard deviation. The final unweighted R -factor is 0.089 . The final difference fourier was essentially featureless. The highest peak in this map had a height of only $0.48 \mathrm{e} / \AA^{3}$.

X-ray Structure Determination of $\mathbf{2 4}$.

Compound 24 crystallized as amber rods from ethanol solutions. X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer using CuK radiation ($\lambda=1.54184 \AA$). The cell constants and an orientation matrix for data collection were deter-
mined from the centered angles of 25 reflections. X-ray diffraction data were collected at $23^{\circ} \mathrm{C}$ using the omega scan technique with a variable omega scan rate from 2° to 20° per minute. The data were collected to a maximum 2θ of 100.0°. A total of 4401 reflections were collected, of which 1924 were unique and not systematically absent. Lorentz and polarization corrections were applied to the data as well as an empirical absorption correction based on a series of psi scans. The crystal structure was determined by direct methods using SIR-92. Hydrogen atom positions were located in subsequent difference fouriers and added to the structure, and their positions were using isotropic thermal parameters. The heavy atom parameters including anisotropic temperature factors were refined by full matrix least squares using 1147 reflections with intensity greater than three times their standard deviation. The final unweighted R -factor is 0.058 . The final difference fourier was essentially featureless. The highest peak in this map had a height of only $0.23 \mathrm{e} / \mathrm{A}^{3}$.

Acknowledgements.
We thank Wen-Song Yue for preparing compound $\mathbf{8}$.

REFERENCES AND NOTES

[1] A. V. Eremeev, V. G. Andrianov and I. P. Piskunova, Chem. Heterocyclic Comp., 14, 500 (1978). The required use of acetic acid for the preparation of compound $\mathbf{1}$ is omitted in the experimental example of the paper.
[2] A. K. Zelenin and M. L. Trudell, J. Heterocyclic Chem., 34, 1057 (1997).
[3] L. W. Deady, J. Desneves and A. C. Ross, Tetrahedron, 49, 9823 (1993).
[4] F. D. Popp, J. Heterocyclic Chem., 9, 1399 (1972).
[5] A. Schonberg, E. Singer, G. A. Hoyer, and D. Rosenberg, Chem. Ber., 110, 3954 (1977).
[6] R. J. Heffner and M. M. Joullie, Synth. Commun., 21, 2231 (1991).
[7] J. Tatsugi and Y. Izawa, Synth. Commun., 28, 859 (1998).
[8] N. Sato and J. Adachi, J. Org. Chem., 43, 341 (1978).
[9] E. C. Taylor, S. F. Martin, Y. Maki and G. P. Beardsley, J. Org. Chem., 38, 2238 (1973).
[10] J. G. Cannon, R. G. Dushin, J. P. Long, M. Ilhan, N. D. Jones and J. K. Swartzendruber, J. Med. Chem., 28, 515 (1985).
[11] Caution: On a single occasion during a large scale preparation of $\mathbf{3}$, an exotherm developed, resulting in a run-away reaction during the period of heating at 80°. We believe this resulted from rapid decomposition of the dimethyl sulfoxide solvent due to inadequate removal under vacuum of the liberated hydrogen bromide. Halogenation / oxidation reactions in this solvent should be performed with suitable safety precautions.
[12] H. E. Zaugg, J. Org. Chem., 41, 3419, (1976).
[13] L. A. Kapicak and M. A. Battiste, Synthesis, 153 (1971).
[14] J. L. G. Nilsson, H. Selander, H. Sievertsson and I. Skanberg, Acta Chem. Scand., 24, 580 (1970).
[15] L. W. L. Woo, N. M. Howarth, A. Purohit, H. A. M. Hejaz, M. J. Reed and B. V. L. Potter, J. Med. Chem., 41, 1068 (1998).

